- Introduction
- Courses
- How to Read
- Requirements
- 1. Part I: Foundation
- 1.1. Linux & Shell Fundamentals
- 1.1.1. Unix Philosophy & Command Line
- 1.1.2. File System & Permissions
- 1.1.3. Process Management
- 1.1.4. Text Processing Tools
- 1.1.5. Shell Scripting Basics
- 1.2. Development Environment with Nix
- 1.2.1. Programming Paradigms
- 1.2.2. Functional Programming
- 1.2.3. Attribute Sets
- 1.2.4. Nix Basics
- 1.2.5. Nix Core Concepts
- 1.3. Version Control with Git
- 1.3.1. Git Fundamentals and Workflow
- 1.3.2. Repository Management
- 1.3.3. Branching and Merging
- 1.3.4. Remote Collaboration
- 1.3.5. Advanced Git and Troubleshooting
- 1.4. Security & Cryptography
- 1.4.1. Cryptography Fundamentals
- 1.4.2. SSH Key Management
- 1.4.3. GPG Data Encryption
- 1.4.4. Age Secret Management
- 1.4.5. Research Data Security
- 2. Part II: Scientific Computing
- 2.1. Python for Science
- 2.1.1. Python Ecosystem
- 2.1.2. NumPy Arrays
- 2.1.3. Pandas Dataframes
- 2.1.4. Visualization
- 2.1.5. Jupyter Notebooks
- 2.2. Data Science
- 2.2.1. Exploratory Analysis
- 2.2.2. Statistical Testing
- 2.2.3. Data Preprocessing
- 2.2.4. Dimensionality & Clustering
- 2.2.5. Insight Visualization
- 2.3. Machine Learning
- 2.3.1. Supervised Learning
- 2.3.2. Unsupervised Learning
- 2.3.3. Model Evaluation
- 2.3.4. Hyperparameter Tuning
- 2.3.5. scikit-learn Practice
- 3. Part III: Bioinformatics
- 3.1. Biological Data Formats
- 3.1.1. Sequence Formats
- 3.1.2. Structure Formats
- 3.1.3. Annotation Formats
- 3.1.4. Experimental Data
- 3.2. Sequence Analysis
- 3.2.1. BioPython
- 3.2.2. Alignment Algorithms
- 3.2.3. BLAST & Database
- 3.2.4. Multiple Alignment
- 3.2.5. Motif Discovery
- 3.3. Genomics & Transcriptomics
- 3.3.1. Genome Assembly
- 3.3.2. RNA-seq Pipeline
- 3.3.3. Differential Expression
- 3.3.4. Functional Enrichment
- 3.3.5. scRNA-seq
- 3.4. Synthetic Biology
- 3.4.1. Circuit Design
- 3.4.2. DNA Assembly
- 3.4.3. Codon Optimization
- 3.4.4. Metabolic Analysis
- 3.4.5. SBOL & Automation
- 3.5. Evolutionary Engineering
- 3.5.1. Simulation
- 3.5.2. Adaptive Evolution
- 3.5.3. Genetic Diversity
- 3.5.4. Selection Pressure
- 3.5.5. Trajectory Prediction
- 4. Part IV: Advanced Applications
- 4.1. Research Workflows
- 4.1.1. Project Structure
- 4.1.2. Data Management
- 4.1.3. Reproducible Pipelines
- 4.1.4. Documentation & Reporting
- 4.2. High Performance Computing
- 4.2.1. Parallel Processing
- 4.2.2. Cluster Computing
- 4.2.3. Container Workflows
- 4.2.4. Cloud Computing
- 4.3. CI/CD for Research
- 4.3.1. Research Testing
- 4.3.2. Pipeline Automation
- 4.3.3. Reproducibility Validation
- 4.3.4. Environment Deployment
- 5. Introduction to Flake
- 6. Introduction to NixOS
- 7. Introduction to Nix-Darwin
- 8. Introduction to Home-Manager